Mechanism of Methanol Oxidation over Oxide Catalysts Containing MoO₃

MIKI NIWA, MAKOTO MIZUTANI, MAMORU TAKAHASHI, AND YUICHI MURAKAMI

Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464 Japan

Received April 25, 1979; revised July 23, 1980

The mechanism of methanol oxidation over a $SnO₂-MoO₃$ catalyst was investigated from the viewpoint of the active molybdenum site available. The $Mo⁵⁺$ on the SnO₂-MoO₃ catalyst was stabilized as a relatively unoxidizable species. The reactivity of the $Mo⁵⁺$ was determined by ESR, ir and gravimetry to be much greater than that of the $Mo⁶⁺$ for methanol oxidation over this catalyst. In situ measurement of the $Mo⁵⁺ ESR$ signal during methanol oxidation indicates that oxidation occurs primarily at Mo⁵⁺ sites. A mechanism for methanol oxidation involving the oxidation-reduction cycle $Mo^{3+} \rightleftharpoons Mo^{4+}$ is proposed. The mechanism may also be valid for ethanol and 2-propanol oxidations over $TiO₂ - MoO₃$ and $MoO₃ - SiO₂$ catalysts.

INTRODUCTION

Since 1931 when Adkins and Peterson (I) discovered the high activity of the mixed $Fe₂O₃$ -MoO₃ catalyst for oxidation of methanol to formaldehyde, most patents and fundamental research papers dealing with this process have been concerned with the $Fe₂O₃$ -MoO₃ system. The activity may be substantially ascribed to $MoO₃$ which achieves enhanced activity on admixture of $Fe₂O₃$. Detailed studies have investigated the role of oxide composition $(2-4)$ and the nature of the active sites as well as the reaction mechanism involved in methanol oxidation $(5-8)$.

The authors have already examined the activities of various mixed oxides, including $Fe₂O₃ - MoO₃$, and found higher activities over $SnO₂-MoO₃$ and $TiO₂-MoO₃$ catalysts than over $Fe₂O₃$ -MoO₃ catalyst (9). In particular, the activity of the $SnO₂-MoO₃$ system for methanol oxidation has been investigated in detail. Methanol is selectively oxidized to formaldehyde over $MoO₃$ at temperatures above 350°C, but it is oxidized to carbon oxides only on SnO₂. For the mixed SnO₂-MoO₃ catalysts, however, formaldehyde was formed

selectively even at 180°C. These activities were nearly independent of the catalyst composition in the range of Sn : MO ratios from $1:9$ to $7:3$. Furthermore, in a freshly oxidized state, these catalysts exhibited an ESR signal due to paramagnetic Mo5+. The relative concentration of $Mo⁵⁺$ in these catalysts as determined by ESR spectroscopy at 77 K appeared to be correlated with the catalytic activity. In the present communication, the activity of the $SnO₂-MoO₃$ catalyst, especially as it relates to the role of the Mo^{5+} , is investigated in detail.

It has been reported that in a variety of cases the catalytic activity may be correlated with the signal intensity of the $Mo⁵⁺$ $(10-15)$. However, the catalytic activity of $Mo⁵⁺$ is not fully understood, and it has not been confirmed that the $Mo⁵⁺$ sites are actually available for the reaction. Provided that an ESR signal can be detected at reaction temperatures without interference from other signals, the behavior of the paramagnetic metal ion may be observed under reaction conditions. Sancier et al. (13) have previously utilized this method of using a "Reactor Cell" to investigate the mechanism of propylene oxidation over

 $Bi₂O₃ - MoO₃/SiO₂$. In the study presented here, the Mo^{5+} signals from $SnO_2-M_0O_3$, $TiO₂-MoO₃$, and $MoO₃-SiO₂$ were examined in conjunction with kinetic measurements to elucidate the mechanism of methanol oxidation over these catalysts.

EXPERIMENTAL

Catalyst. The $SnO₂-MoO₃$ catalyst was prepared by mixing of tin(IV) hydroxide gel with ammonium molybdate solution, drying in a 120°C oven, and then calcining at 500°C for 3 hr in an air stream. The $Sn(OH)₄$ gel used was precipitated by the addition of $SnCl₄ \cdot 2H₂O$ to aqueous ammonia solution and then washed with water to remove Cl^- ion. The TiO_2-MoO_3 catalyst was obtained by mixing an ammonium molybdate solution with tetraethyl orthosilicate in a vibration mixer enclosed in a water bath. The resulting gel was thoroughly mixed in a kneader.

ESR. ESR measurements were performed in the X-band with a JEOL spectrometer (JES-ME-lx). The ESR in situ cell was made of a 3 mm i.d. Pyrex outer tube and a 1 mm o.d. inner tube which was set in a cavity equipped with a variable temperature attachment. $CH₃OH$, $O₂$, and N_2 were passed into the ESR in situ cell under the same conditions of reaction temperature, catalyst weight, total flow rate, and partial pressures as the normal continuous-flow reaction. The ESR spectra of the oxides were measured during the oxidation reactions. The radical concentration was determined by comparison with a KBr diluted coke sample, and g values were determined by comparison with Mn^{2+} impurity in MgO.

ir. Infrared spectra of untreated or treated $SnO₂–MoO₃$ samples were recorded on an emissionless diffuse reflectance spectrophotometer (JASCO IRA-3s) (16) at room temperature. ir samples were 3.0 wt $%$ catalyst/KBr mixtures.

Gravimetry. Weight loss from $SnO₂$ -MOO, by reduction or oxidation was measured gravimetrically using a quartz spring microbalance with a constant of 207 mg/cm in a doubly sealed vessel. CCl₄ vapor was admitted to the outer tube to keep a constant temperature. Expansion of the balance was monitored with a cathetometer.

Kinetics. Catalyst (0.2 g) was placed in a reactor made of 10 mm i.d. Pyrex glass and heated in a sand bath. A gas mixture of $O₂$, N_2 , and CH_3OH was passed into the reactor at a total flow rate of 70 ml/min, and the products were injected into a gas chromatograph through a gas-sampling valve. The gas chromatograph was constructed of two TCD detectors. A sucrose octaacetate on Daiflon column at 80°C was used for separation of the CH₃OH and HCHO components of the mixture. These components were analyzed prior to passage of the mixture through a 0.5 m Porapak T column at room temperature which allowed analysis for $CO₂$ after returning the gases through the opposite side of the first detector. $O₂$, N_2 , and CO were then separated from the mixture by a 2 m Molecular Sieve 13X column at room temperature and analyzed in the second detector.

RESULTS

Behavior of Mo^{5+} on $SnO_2-M_0O_3$

As mentioned previously, the activity of different $SnO₂-MoO₃$ catalyst is nearly independent of the Sn/Mo ratio. The 3:7 $SnO₂-MoO₃$ is used as an example in a following description.

Figure 1 shows an anisotropic ESR signal formed at $g = 1.92$ for $SnO₂ - MoO₃$ in the in situ reactor at 180°C. This signal can be

FIG. 1. ESR spectrum of Mo^{3+} on $SnO, -MO_2$. under reaction conditions.

observed also for pure $MoO₃$, but not for $SnO₂$. By comparison with the data in the literature $(10-15)$, the signal can be assigned to the paramagnetic $Mo⁵⁺$. The linewidth of this signal is close to that observed under vacuum, and it is not influenced by the presence of oxygen or methanol.

Sancier *et al.* (18) has proposed that the surface Mo^{5+} on $Bi_2O_3-M_0O_3$ can be distinguished from the $Mo⁵⁺$ in the bulk sample by observing the decrease in signal intensity due to dipole interaction between adsorbed oxygen and paramagnetic $Mo⁵⁺$ at the surface. The influence of adsorbed oxygen on the signal intensity for the $SnO₂$ -MOO, catalyst was examined at room temperature. The correlation of signal intensity with the partial pressure of oxygen on untreated and treated $SnO₂ - MoO₃$ is shown in Fig. 2. Another unidentified signal at $g =$ 2.0 was observed for the catalysts which had been either evacuated at 430°C or treated with methanol and oxygen at 200°C. Although the $g = 2.0$ signal decreased in intensity on introduction of oxygen and could be restored to the original intensity upon evacuation, the $Mo⁵⁺$ signal intensity remained virtually unchanged by this treatment. Therefore, the $Mo⁵⁺$ does not appear to interact with adsorbed oxygen at the surface and so must be highly stabilized at room temperature because it is unlikely that all of the Mo^{5+} are immersed in the bulk of the catalyst. The behavior of the $Mo⁵⁺$ on $SnO₂-MoO₃$ is quite different from $Bi₂O₃ - MoO₃$ (18) in this respect.

The variation in $Mo⁵⁺$ signal intensity

FIG. 2. Influence of partial pressure of oxygen on $Mo⁵⁺$ signal intensity at room temperature over $SnO₂$ - $MoO₃$ catalyst, untreated (\triangle), evacuated at 430°C (\bigcirc , \bullet), and treated with methanol and oxygen at 200°C (\Box , \blacksquare). (\bigcirc , \blacklozenge); reproduced by the reevacuation of gas phase.

was then measured at 185°C in the *in situ* cell. Following oxidation, the catalyst was reduced by the addition of methanol vapor and the signal intensity was monitored as a function of time. As shown in Fig. 3, the signal intensity was recovered by oxidation of the catalyst. The rate of reoxidation was a little slower than that of reduction. The reduction-reoxidation cycle indicates that the $Mo⁵⁺$ signal exhibits its greatest intensity at the highest oxidation level of the catalyst.

Throughout these measurements no signal due to carbon deposition was observed, and since the signal width was nearly constant, about 110 G, the relative intensity of the $Mo⁵⁺$ signal was expressed in terms of

FIG. 3. The variation of signal intensity with time in methanol or oxygen flow at 185°C.

peak-to-peak height. If methanol reduced the Mo^{6+} to Mo^{5+} on the surface, the Mo^{5+} signal intensity should have increased during the reduction by methanol. It was therefore assumed that the Mo^{5+} site was reduced, but the $Mo⁶⁺$ was not reduced to $Mo^{5+}.$

Assuming first order kinetics for the concentrations of oxidized site and methanol, the reduction rate shown in Fig. 3 was analyzed quantitatively. The decrease of active sites by the reduction is described as

$$
\log \frac{\theta_{\rm t}}{\theta_{\rm 0}} = -\frac{k_{\rm 1}' P_{\rm m}}{2.303} t \tag{1}
$$

where θ_t and θ_0 denote the concentrations of oxidized sites at time t and at the initial state, respectively, and P_m shows the partial pressure of methanol. k_1 is the rate constant per oxidized site for the reduction step, and is related to k_1 , the rate constant per g-catalyst, as

$$
k_1 = k_1' N_{\mathfrak{t}},\tag{2}
$$

where N_t shows the total number of oxidized sites, i.e., $3.0 \times 10^{18}/g$ -catal., the greatest value in an oxygen stream. Similar kinetic equations may be applied to the reoxidation step, but the rate of reoxidation is assumed to be proportional to the root of the partial pressure of oxygen. Plots of Eq. (1) gave straight lines from which rate constants could be calculated. Rate constants for the reduction and reoxidation of the $Mo⁵⁺$ are shown in Table 1. These values are to be compared with parameters obtained by other methods.

X-Ray diffraction patterns of fresh and aged samples of $SnO₂-MoO₃$ were indicative of only $SnO₂$ and $MoO₃$ and did not exhibit patterns for any new compounds. This result agrees with those obtained by Buiten (19) and Araki et al. (20) . The crystal size of $MoO₃$ was calculated from the line width to be about 560 A. Assuming that the sample contains the typical $MoO₃$ unit cell, about 2% of Mo atom should exist at the surface. It was estimated that roughly 5% of the surface MO atoms could be detected as $Mo⁵⁺$ sites. In other words, most of the molybdenum oxide exists in the $MoO₃$ form and only a small concentration of $Mo⁵⁺$ is observed at the surface.

Infrared and Gravimetric Measurements

In order to determine the reactivity of the $Mo⁶⁺$ which is undetectable by ESR, infrared and gravimetric measurements were performed. Figure 4a shows the ir spectrum of untreated $SnO₂-MoO₃$ below 1100 cm^{-1.} Absorptions were observed at 985 and 880 cm⁻¹, which were attributed to $Mo⁶⁺=O$ and $Mo⁶⁺-O-Mo⁶⁺$, respectively. This is in good agreement with the report by Araki et al. (20) . When the catalyst was then reduced by a methanol and nitrogen mixture in a flow reactor for 1 hr at 206"C, the intensity of absorption decreased only a little. According to Lambert-Beer's law, the $Mo^{6+} = O$ and $Mo^{6+} - O - Mo^{6+}$ bands decreased by 33.4 and 19.0%, respectively. These bands disappeared on reduction with methanol at 461°C. Obviously, the reduction of $Mo⁶⁺$ was much

	ш		
		۰.	

Comparison between Rate Constants Obtained from Various Experimental Methods

FIG. 4. Infrared spectra of the $SnO₂ - MoO₃$ catalyst, untreated (a) and reduced by methanol at 206°C (b) and 461°C (c) for I hr.

slower than that of Mo^{5+} , because the latter disappeared in only 5 min at 185°C, as described above.

Weight loss during the reduction was then measured gravimetrically at 203°C. After the catalyst was fully oxidized in the vacuum-vessel, methanol vapor was introduced to reduce the catalyst at 203°C. The

catalyst weight decreased gradually on reduction, as shown in Fig. 5. It reached a steady state after about 2 hr. The catalyst weight further decreased on evacuation of the gas phase, and reached a 2 wt% decrease in the most reduced condition. Finally, reoxidation by oxygen increased the catalyst weight, but did not recover its initial state.

If the catalyst is fully reduced, i.e., $SnO₂$ and $MoO₃$ become SnO and $MoO₂$, the catalyst weight should decrease by 11 wt%. However, only a 2 wt% decrease was observed under these conditions. Consequently, a reduction for 2 hr at 203°C results in incomplete reduction. As with the infrared study, the reduction of the entire catalyst by methanol is very slow compared to the Mo^{5+} reduction.

If the increase in weight due to adsorption of methanol is neglected, the rate constant for the reduction may be calculated based on Eq. (1). As clearly shown in Table 1, the rate constant, k_1 , derived from gravimetric measurement is much smaller than that for the reduction of $Mo⁵⁺$ determined by ESR measurement. It is considered that the few assumptions necessary for deriving k_1 from Fig. 5 have only a small influence on this result. Therefore, the $Mo⁵⁺$ can be regarded as a highly reactive oxidized site in comparison to the Mo^{6+} .

FIG. 5. Time dependence of weight loss over $SnO₂ - MoO₃$.

Kinetics and in Situ Measurements on $SnO₂–MoO₃$

The mechanism of methanol oxidation has been previously analyzed by several investigators. The ideas regarding the oxidation-reduction mechanism proposed by Jiru et al. (5) were experimentally confirmed, and consistently followed in concurrent studies by Mann and Hahn (21) and Pernicone et al. (22). However, the orders of the reaction for oxygen and methanol did not necessarily coincide. According to the reaction mechanism proposed, oxidation of methanol takes place in the following manner,

$$
CH3OH + (O) \xrightarrow{k} HCHO + H2O + (-)
$$

() + $\frac{1}{2}$ O₂ $\xrightarrow{k_2}$ (O)

where (O) and () denote active site and where σ and σ denote active site and teque site, tespectively. On the basis of this reaction scheme, kinetic equations are given relating to the coverage of active site (θ) and the rate of methanol oxidation (r) in the following.

$$
\frac{1}{\theta} = 1 + \frac{k_1 P_{\text{m}}}{k_2 P_0^{1/2}}
$$
 (3)

$$
\frac{1}{r} = \frac{1}{k_1 P_m} + \frac{1}{k_2 P_0^{1/2}}.
$$
 (4)

 P_0 was varied with a constant P_m (0.0382 atm).

The findings above suggest that the oxidized active sites may be ascribed to the M_{\odot} ⁺ rather than the Mo6+, and it follows $\frac{1}{2}$ may be given as large given as large given as large $\frac{1}{2}$. that $1/\theta$ may be given as $1/[Mo^{5+}]$. Based
on Eq. (3), therefore, plots of $1/[Mo^{5+}]$ on Eq. (*j*), increase, prois or $1/[N\omega]$ α against ℓ_{m}/ℓ_{0} . give a straight line with a slope of (k_1/k_2) . On the other hand, values of k_1 and k_2 may be obtained by applying the rate of methanol oxidation in a differential reactor to Eq. (4) . The rate constants k_1 and k_2 , and their ratio were obtained and compared by both measure-
ments. $T_{\rm E}$ spectrum of $M_{\rm E}$ was measured was measu

I he ESR spectrum of $MO^{\sigma+}$ was measured by varying the partial pressure of oxygen against a constant partial pressure of methanol. As observed above, the signal intensity decreased with decreasing. partial pressure of oxygen. Reciprocals of the resultant signal intensities were plotted against $P_m / P_0^{1/2}$ from Eq. (3) and are shown in Fig. 6. These exhibited straight lines with an intercept of 1, as expected from Eq. (3). The ratios (k_1/k_2) at 188 and 198°C were calculated from these slopes. On the other hand, plots of $1/r$ against $1/P_0^{1/2}$, reproduced in Fig. 7, gave k_1 and k_2 from the intercept and the slope, respectively. Furthermore, k_1 and k_2 were also obtained from the plots in \overline{P} as \overline{C} Plate of 1/Most escient P, (P, 1/2, in which Fig. 8, in which the rate of methanol 0) dation was measured by varying the par-

FIG. 8. Plots of $1/r$ against $1/P_m$.

tial pressure of methanol. The rate constants obtained from the data shown in Figs. 7 and 8 agreed well within the experimental error. Consequently, kinetic Eq. (4) derived from the proposed oxidation-reduction mechanism seems to be confirmed.

The (k_1/k_2) ratios obtained from the $SnO₂-MoO₃$ system are summarized in Fig. 9 by showing $log (k_1/k_2)$ against the reciprocal absolute temperature. The values are shown in a simple relationship irrespective of measurement methods. It is therefore confirmed that the oxidation of methanol over the $SnO₂-MoO₃$ catalyst proceeds via the Mo⁵⁺ in the oxidation-reduction mechanism.

Measurements with Other Catalysts and Reactants

Methanol oxidation over $TiO₂ - MoO₃$ proceeded selectively at higher conversion levels than over $Fe₂O₃$ -MoO₃, as far as our experiments were concerned. $MoO₃-SiO₂$, however, possessed only a slightly higher activity than unsupported $MoO₃$. In ESR in situ measurements, the number of Mo^{5+} on TiO_2-MoO_3 ($g = 1.90$) and $MoO₃-SiO₂$ ($g = 1.96$) decreased with decreasing partial pressure of oxygen, as was found over $SnO₂-MoO₃$. Plots of (A) was varied.

 $1/[Mo^{5+}]$ against $P_m/P_0^{1/2}$ showed straight lines with an intercept of 1, and these plots made it possible to calculate the ratio (k_1/k_2) . The kinetic expression given in Eq. (4) was valid also for these catalysts, and rate constants were obtained from kinetic measurements. Comparison of the (k_1/k_2) values for the TiO₂-MoO₃ and $MoO₃-SiO₂$ systems in Fig. 9 indicates the consistency between the ESR and kinetic measurements. The conclusions above regarding $SnO₂-MoO₃$ are therefore approximately applied also to methanol oxidation over $TiO₂ - MoO₃$ and $MoO₃-SiO₂$.

The behavior of the Mo^{5+} on SnO_2-MoO_3 during reaction was then investigated with C_2H_5OH , 2- C_3H_7OH , and C_3H_6 as reducing agents. The number of $Mo⁵⁺$ on $SnO₂$ - $MoO₃$ decreased with increasing partial pressure of C_2H_5OH or 2- C_3H_7OH , and the calculated values of (k_1/k_2) at 162°C were 34.4 and 10.8 for ethanol and 2-propanol, respectively, both much greater than found for methanol (1.5) .

Figure 10 shows the variation in relative intensity of Mo^{5+} signal on SnO_2-MO_3 and $MoO₃-SiO₂$ during oxidation of propylene. Under reducing atmosphere, the signal intensity decreased on $SnO₂ - MoO₃$, while it

FIG. 9. Comparison of the ratios (k_1/k_2) from ESR (O) and kinetic $(\bullet, \blacktriangle)$ measurements over SnO₂- $MoO₃$, TiO₂-MoO₃, and MoO₃-SiO₂. The kinetic measurements were performed when either $P_0(\bullet)$ or P_m

 P_{CH} (partial pressure of propylene)/ P_0 on MoO₃-SiO₂ increase in the acidity may be associated

 $MoO₃-SiO₂$. It was found that the Mo⁵⁺ on by Giordano *et al.* (26), i.e., $SnO₂-MoO₃$ is not only reduced by alcohols but also by propylene in the oxidation reaction. Thus forming $(Mo⁵⁺-OH)$ species may have

DISCUSSION below.

was increased by mixing $SnO₂$ with nol and 2-propanol. However, the rate con- $MoO₃$. This $Mo⁵⁺$ was very stable and was stants obtained by the kinetic measurenot oxidized to Mo⁶⁺ even by calcination at ments were about 10 times as much as 500° C, and fresh samples possessed Mo⁵⁺ those derived from the reduction-reoxidato nearly the same degree as the aged one. tion cycle of $Mo⁵⁺$, though these ratios

the latter can interact with adsorbed oxygen at room temperature and disappears easily by oxidation at a high temperature (13, 18). One can expect that these binary oxide catalysts possess different $\frac{1}{1.0}$ states of the Mo⁵⁺. It seems therefore that the $Mo⁵⁺$ is stabilized by neighboring $SnO₂$, and is concentrated at the boundary surface. In other words, the Mo^{5+} on SnO_2-MoO_3 can be regarded as a relatively unoxidizable species under these conditions. Stabilization of the $Mo⁵⁺$ through neighboring Mo-O-Al bonding has been discussed previously by Giordano et al. (24) in the case of $MoO₃/Al₂O₃$. This characteristic $Mo⁵⁺$ on $SnO₂-MoO₃$ is quite different from that found for Mo^{5+} on $Bi_2O_3-M_0O_3$, because

Furthermore, it has been reported by Takita, et al. (25) that the solid acidity FIG. 10. Variation in relative intensity of Mo⁵⁺ with increases on mixing $SnO₂$ and MoO₃. This and $SiO₂-MoO₃$ at 278°C.
with the $Mo⁵⁺$, as mentioned above. The origin of acidity may be appeared by the increased rapidly to become steady state on interaction of water and $Mo⁵⁺$, as indicated

$$
\mathrm{Mo}^{5+} + \mathrm{H}_2\mathrm{O} \rightarrow (\mathrm{Mo}^{5+} - \mathrm{OH})^- + \mathrm{H}^+
$$

a role of activating methanol, as described

The mixed $SnO₂-MoO₃$ catalyst has been Comparison of the reduction rates for known for its peculiar activity in the oxida- $Mo⁵⁺$ (ESR) and $Mo⁶⁺$ (ir and gravimetry) tion of propylene (19, 23) and ethylbenzene shows that the Mo⁵⁺ is highly reactive, and (20). Catalytic activities are much en- can be regarded as the active site for methahanced by mixing these oxides, as de- nol oxidation on $SnO₂-MoO₃$. ESR in situ scribed in this communication. However, measurements also add support to this hydetailed investigations of the structure of pothesis, because the derived ratio of rate the mixed oxide did not detect a new com- constants (k_1/k_2) was in good agreement pound consisting of $SnO₂$ and $MoO₃$ with that determined from kinetic measure-(19, 20), and it was believed that active ments. The high activity of the $Mo⁵⁺$ may sites could be attributed essentially to the also be found in other binary oxides such as boundary surface of $SnO₂$ and $Mo₃$. TiO₂-MoO₃ for the oxidation of methanol, In addition, the concentration of $Mo⁵⁺$ or in $SnO₂-MoO₃$ for the oxidation of ethawere fairly consistent (Table 1). This difference may originate from the uncertainty of the radical concentration of Mo^{5+} , N_t , or from delayed reaction due to the immersed bulk sites. Therefore, all of the $Mo⁵⁺$ may not be available as active oxidized sites while the reaction is in progress.

The oxidized $Mo⁵⁺$ site probably turns into Mo^{4+} or Mo^{3+} on reduction. It is not easy to decide at present which is plausible reduced state of molybdenum ion. If the reduced site is the Mo^{4+} , which can be usually observed in reduced molybdenum oxide, and if the oxidized surface may be represented as in Fig. 11 (24), the reaction mechanism can be described as follows. Methanol may initially interact with Mo^{5+} -OH to give a surface methoxy group in place of an OH-group. This is followed by abstraction of the hydrogen to produce formaldehyde. This is repeated after reoxidation of the surface with oxygen.

It is well known that methanol yields methoxy radicals under electron-bombardment, and the OH group exchanges easily with D_2O to produce CH_3OD in a liquid state. Also in discussing the reaction route for methanol oxidation, the methoxy group attached to the metal cation has been regarded as one of the most likely species (4, 7). However, it seems that the ratedetermining step involves the cleavage of the C-H bond. Iwasawa et al. (27) has also discussed the reaction mechanism of oxidation of ethanol on an MO-fixed catalyst, and

FIG. 11. Reaction mechanism of methanol oxidation on $SnO₂ - MoO₃$ catalyst.

regarded the abstraction of a hydrogen of methyl group as the rate-determining step. Evmenenko and Gorokhobatskii (8) indicated that the high reactivity of ethyl alcohol was due to a smaller bond energy of RC(OH)-H in ethanol (88 kcal/mol) than in methanol (92 kcal/mol). Therefore, the reaction most likely proceeds via the methoxy ion, followed by abstraction of hydrogen in the slowest step. This scheme is not inconsistent with the result obtained by Pernicone et al. $(7, 22)$ in which the addition of water to the reaction system suppressed the reaction rate.

Sancier et al. (13) have previously reported that the concentration of Mo⁵⁺ on $Bi₂O₃ - MoO₃$ and on $SiO₂$ -supported $MoO₃$ increased after the addition of propylene, and the electron transfer, $Mo^{6+} + e^- \rightarrow$ Mo5+, was associated with the adsorption of $C_3H_6^+$. Their result for the MoO₃-SiO₂propylene system was confirmed in this paper (Fig. 10). Therefore, the findings on propylene oxidation by Sancier et al. are directly contrary to our results on methanol oxidation, because the concentration of $Mo⁵⁺$ decreased upon the reduction by CH,OH. One can suggest therefore that oxidations of propylene and methanol occur primarily at different active sites, i.e., $Mo⁶⁺$ and $Mo⁵⁺$, respectively. In fact, propylene oxidation is fast on $Bi₂O₃ - MoO₃$ in which the concentration of $Mo⁶⁺$ was increased by mixing of $Bi₂O₃$ (10, 13), while methanol is readily oxidized on $SnO₂$ -MOO, which had an enhanced concentration of $Mo⁵⁺$. Availability of molybdenum sites with different oxidation states was reported by Giordano et al. (28).

ESR in situ measurement could not be applied to the $Fe₂O₃$ -MoO₃ catalyst, because the broad signal due to the iron magnetic resonance obscures the Mo⁵⁺ field (2). It is suggested that one of the active phase for this reaction may be a spinel-type compound, $Fe₂(MoO₄)₃$. It may be also indicated that the $MoO₃$ component in $Fe₂O₃$ -MoO₃ shares common features with the $MoO₃$ component in $SnO₂-MoO₃$, because the activity of formaldehyde forma- 12. Seshadri, K. S., Massoth, F. E., and Petrakis, L., tion in the $Fe₂O₃ - MoO₃$ system is ascribed to $MoO₃$, and much heightened by mixing with $Fe₂O₃$.

ACKNOWLEDGMENTS

The authors wish to thank Dr. W. H. Quayle for helpful discussions.

REFERENCES

- 1. Adkins, H., and Peterson, W. R., J. Amer. Chem. Soc. 53, 1512 (1931).
- 2. Boreskov, G. K., Kolovertnov, G. D., Kefeli, L. M., Plyasova, L. M. Karakchiv, L. G., and Mastikhin, V. N., Kinet. Katal. 7, 144 (1%6).
- 3. Pemicone, N., Liberti, G., and Ersini, L., Proc. Int. Congress Catal. 4th (Moscow, 1968) p. 287 (1968).
- 4. Novakova, J., Jiru, P., and Zavadil, V., J. Catal. 21, 143 (1971).
- 5. Jiru, P., Wichterlova, B., and Tichy, T., Proc. Int. Congr. Catal., 3rd Amsterdam 1, 199 $(1965).$
- 6. Mann, R. S., and Dosi, M. K., J. Catal. 28, 282 (1973).
- 7. Pemicone, N., Lazzerin, F., Liberti, G., and Lanzavecchia, G., J. Catal. 14, 293 (1969).
- 8. Evmenenko, N. P., and Gorokhobatskii, Ya. B., Kinet. Katal. 11, 130 (1970).
- 9. Niwa, M., Mizutani, M., and Murakami, Y., Nippon Kagaku Kai-shi 1977, 757.
- 10. Peacock, J. M., Sharp, M. J., Parker, A. J., Ashmore, F. G., and Hockey, J. A., J. Catal. 15, 379 (1%9).
- II. Seshadri, K. S., and Petrakis, L., J. Phys. Chem. 74, 4102 (1970).
- J. Catal. 19, 95 (1970).
- 13. Sancier, K. M., Dozono, T., and Wise, H., J. Catal. 23, 270 (1971).
- 14. Burlamacchi, L., Martini, G., and Ferroni, E., JCS Faraday Trans. I 68, 1586 (1972).
- 15. Akimoto, M., and Echigoya, E., J. Catal. 29, 191 (1973).
- 16. Niwa, M., Hattori, T., Takahashi, M., Shirai, K., Watanabe, M., and Murakami, Y., Anal. Chem. 51, 46 (1979).
- 17. Mann, R. S., and Hahn, K. W., Anal. Chem. 39, 1315 (1%7).
- 18. Sancier, K. M., Wentrcek, P. R., and Wise, H., J. Catal. 39, 141 (1975).
- 19. Buiten, J., J. Catal. 10, 188 (1968).
- 20. Araki, M., Nishimura, I., Hayakawa, T., Takehira, K., and Ishikawa, T., Shokubai 14, 47 (1972).
- 21. Mann, R. S., and Hahn, K. W., J. Catal. 15, 329 $(1969).$
- 22. Pemicone, N., Lazzerin, F., and Lanzavecchia, G., J. Catal. 10, 83 (1968).
- 23. Tan, S., Moro-oka, Y., and Ozaki, A., J. Catal. 17, 132 (1970).
- 24. Giordano, N., Bart, J. C. J., Castellan, A., and Vaghi, A., Climax First Int. Conf. MO., 194 (1974).
- 25. Takita, Y., Ozaki, A., and Moro-oka, Y., J. Catal. 27, 185 (1972).
- 26. Giordano, N., Vaghi, A., Bart, J. C. J., and Castellan, A., J. Catal 38, 11 (1975).
- 27. Iwasawa, Y., Nakano, Y., and Ogasawara, S., JCS Faraday Trans. I 12, 2968 (1978).
- 28. Giordano, N., Meazza, M., Castellan, A., Bart, J. C. J., and Ragaini, V., J. Catal. 50, 342 (1977).
- 29. Trifiro, F., Notarbartolo, S., and Pasquon, I., J. Catal. 22, 324 (1971).
- 30. Novakova, J., Jiru, P., and Zavadil., V., J. Catal. 17, 93 (1970).